استخدام الذكاء الاصطناعي في تعزيز السلامة المرورية بالدول العربية

المؤلفون

علي بن ضبيان الرشيدي
مركز السلامة المرورية، جامعة نايف العربية للعلوم الأمنية، المملكة العربية السعودية
عثمان أحمد الطاهر
مركز السلامة المرورية، جامعة نايف العربية للعلوم الأمنية، المملكة العربية السعودية
شريف شكري عبد ربه
مركز السلامة المرورية، جامعة نايف العربية للعلوم الأمنية، المملكة العربية السعودية
محمد سعيد القحطاني
مركز السلامة المرورية، جامعة نايف العربية للعلوم الأمنية، المملكة العربية السعودية

الكلمات المفتاحية:

الدراسات الأمنية، الذكاء الاصطناعي، السلامة المرورية، الدول العربية

موجز

استكشفت هذه الدراسة الوضع الراهن لاستخدام الذكاء الاصطناعي في تعزيز السلامة المرورية بالدول العربية من خلال تحديد مجالاته الرئيسة المستخدمة، والتعرف على واقع استخدامه في السلامة المرورية، والتحديات التي تؤثر سلبًا في هذا الاستخدام. كما تهدف الدراسة إلى التعرف على التأثير المحتمل للذكاء الاصطناعي في الحَدّ من الحوادث المرورية وتحديد الممارسات العالمية لاستخدامه في مجالات الحركة المرورية على الطرق.
واستخدامت الدراسة المنهج الوصفي الوثائقي والوصفي المسحي؛ وأكدت الدراسة أن الذكاء الاصطناعي يمكن أن يعالج مشكلات الحركة المرورية على الطرق في مجالات إدارة الحركة المرورية، والسلامة المرورية، والنقل العام، والتنقل الحضري، ولكي يتم ذلك ينبغي للجهات المعنية في الدول العربية تحديد أولويات تطبيق نظم الذكاء الاصطناعي المطلوبة، والتعامل مع الأطر التنظيمية التي تضع حواجز تَحدّ من تبني التقنيات الناشئة المبتكرة في مجالات الحركة المرورية، وإزالة كافة العقبات التنظيمية التي يمكن أن تؤثر سلبًا في تبني استخدام نظم الذكاء الاصطناعي، وتوفير قواعد آمنة للبيانات المرورية الرقمية المتعلقة بأنظمة الذكاء الاصطناعي، وإتاحة الفرص للقطاع الخاص للمشاركة في تطوير البنية التحتية لتطبيقات نظم الذكاء الاصطناعي المطلوبة في الحركة المرورية.

أولًا: المراجع العربية

عبيدات، ذوقان وآخرون (2005). البحث العلمي: مفهومه وأدواته وأساليبه، الرياض: دار الخريجي للنشر والتوزيع.

العساف، صالح، محمد (2005). المدخل إلى البحث في العلوم السلوكية، الرياض: العبيكان للطباعة والنشر.

ثانيًا: المراجع الأجنبية

Abduljabbar, R., Dia, H., Liyanage, S. and Bagloee, S.A. (2019). Applications of Artificial Intelligence in Transport: An Overview. Sustainability.11(189):1-28.

ADP calculations based on data from United Nations Department of Economic and Social Affairs. Population Division. 2019. International Migrant Stock. [ONLINE] Available at: https://www.un.org/en/development/desa/population/migration/data/estimates2/estimates19.asp.

Ahmed, W., Muhamad, S., Sentosa, I., Akter, H., Yafi, E. and Ali, J. (2020). Predicting IoT Service Adoption towards Smart Mobility in Malaysia: SEM-Neural Hybrid Pilot Study. Int. J. Adv. Comput. Sci. Appl. 2020: 11.

Akhtar, M. and Moridpour, S. (2021). A Review of Traffic Congestion Prediction Using Artificial Intelligence. Journal of Advanced Transportation. vol. 2021, Article ID 8878011, 18 pages, 2021. https://doi.org/10.1155/2021/8878011.

Aksjonov, A., Nedoma, P., Vodovozov, V., Petlenkov, E. and Herrmann, M. (2017). A method of driver distraction evaluation using fuzzy logic, in Proc. Int. Conf. Inf., Commun. Automat. Technol., Sarajevo, Bosnia, and Herzegovina, 2017, pp. 1–7.

Amditis, A. and Lytrivis, P. (2015). Towards Automated Transport Systems: European Initiatives, Challenges and the Way Forward. In Road Vehicle Automation 2; Lecture Notes in Mobility; Meyer, G., Beiker, S., Eds.; Springer: Cham, Switzerland.

Andersen, S.J. (2004). Current Intelligent Transport Systems (ITS) initiatives, 23rd Annual South African Transport Conference, Pretoria, 12-15 July 2004.

Anzilotti, E. (2019). New York City’s School Buses will Now be Automatically Routed and Tracked Using Via’s Algorithm. Fast Company, Compass, 21 September 2019.

Apanaviciene, R., Vanagas, A. and Fokaides, P.A. (2020). Smart Building Integration into a Smart City (SBISC): Development of a New Evaluation Framework. Energies. 13: 2190.

Ata, A., Khan, M.A., Abbas, S., G. Ahmad, G. and Fatima, A. (2019). Modelling smart road traffic congestion control system using machine learning techniques. Neural Network World 2:99–110.

Badii, C., Bellini, P., Cenni, D., DiFino, A., Nesi, P. and Paolucci, M. (2017). Analysis and assessment of a knowledge based smart city architecture providing service APIs. Futur. Gener. Comput. Syst.75:14–29.

Badii, C., Bellini, P., DiFino, A. and Nesi, P. (2018). Sii-Mobility: An IoT/IoE Architecture to Enhance Smart City Mobility and Transportation Services. Sensors.19: 1.

Bakare, A.B. and Jovanis, P. P. (2016). Analysis of Unsignalized intersection capacity. Int. J. Constr. Res. Civ. Eng. 2(1):21–31.

Balducci, F. and Ferrara, A. (2018). Using urban environmental policy data to understand the domains of smartness: An analysis of spatial autocorrelation for all the Italian chief towns. Ecol. Indic.89: 386–396.

Ben Hamida, E., Noura, H.N. and Znaidi, W. (2015). Security of Cooperative Intelligent Transport Systems: Standards, Threats Analysis and Cryptographic Countermeasures. Electronics. 4:380–423.

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8), 1798-1828.

Bengio, Y., Lee, D. H., Bornschein, J., Mesnard, T., & Lin, Z. (2015). Towards biologically plausible deep learning. arXiv preprint arXiv: 1502.04156.‏

Brzozowska. A., Bubel, D. and Kalinichenko, A. (2019). Analysis of the road traffic management system in the neural network development perspective. Eastern-European Journal of Enterprise Technologies ISSN 1729-3774.

Cerutti, P.S., Martins, R.D., Macke, J. and Sarate, J.A.R. (2019). Green, but not as green as that, An analysis of a Brazilian bike-sharing system. J. Clean. Prod.217:185–193.

Chakraborty, P., Adu-Gyamfi, Y.O., Poddar, S., Ahsani, V., Sharma, A. and Sarkar, S. (2018). Traffic congestion detection from camera images using deep convolution neural networks. Transp. Res. Rec, 2672:222–231.

Chang, S.J., Chen, H.Y. and Chen, H.C. (2019). Mobility as a service policy planning, deployments and trials in Taiwan. Iatss Res. 43: 210–218.

Chen, Y., Ardila-Gomez, A. and Frame, G. (2017). Achieving energy savings by intelligent transportation systems investments in the context of smart cities. Transp. Res. Part D Transp. Environ. 54: 381–396.

Ciregan, D., Meier, U., & Schmidhuber, J. (2012, June). Multi-column deep neural networks for image classification. In 2012 IEEE conference on computer vision and pattern recognition (pp. 3642-3649). IEEE.‏

Cledou, G., Estevez, E. and Barbosa, L.S. (2018). A taxonomy for planning and designing smart mobility services. Gov. Inf. Q. 35: 61–76.

Cloete, R. (2002). Modelling the Effects of Intelligent Transport Systems, University of Cape Town, Department of Civil Engineering (Undergraduate Thesis).

Čukušić, M.; Jadrić, M.; Mijač, T. (2019). Identifying challenges and priorities for developing smart city initiatives and applications. Croat. Oper. Res. Rev. 10: 117–129.

Dang, T., Townsend, H. and Vasudevan, M. (2019). Memorandum on Documented Definition of AI with focus on ITS. Federal Highway Administration, FHWA-JPO-19-781.

De Almeida Correia, G.H., Milakis, D., Van Arem, B. and Hoogendoorn, R. (2016). Vehicle automation and transport system performance. In Handbook on Transport and Urban Planning in the Developed World; Edward Elgar Publishing: Cheltenham, UK. pp. 498–516.

Del Vecchio, P., Secundo, G., Maruccia, Y. and Passiante, G. (2019). A system dynamic approach for the smart mobility of people: Implications in the age of big data. Technol. Forecast. Soc. Chang.149 :119771.

Department of Economic and Social Affairs. (2001). The role of the transport sector in environmental protection. background paper NO. 15. Prepared by the United Nations Environment Programme. Online at: https://www.un.org/esa/sustdev/csd/csd.

DfT. (2004). Feasibility study of road pricing in the UK – July Report. European Commission. VRUITS – Improving Safety and Mobility of Vulnerable Road Users through ITS Applications. https://cordis.europa.eu/project/rcn/186986/en.

Docherty, I., Marsden, G. and Anable, J. (2018). The governance of smart mobility. Transp. Res. Part A Policy Pr.115: 114–125.

Duan, Y., Edwards, J. S. and Xu, M. X. (2005). Web-based expert systems: benefits and challenges. Information and Management. 42(6): 799–811.

European Commission, (2018a). Artificial Intelligence for Europe.

European Commission. (2018b). On the road to automated mobility: An EU strategy for mobility of the future,

Falamarzi, A., Borhan, M. N. and Rahmat, R. A. O. (2014). Developing a web-based advisory Expert System for implementing traffic calming strategies. The Scientific World Journal. 2014:1–16.

Falco, E., Malavolta, I., Radzimski, A., Ruberto, S., Iovino, L. and Gallo, F. (2017). Smart City L’Aquila: An Application of the Infostructure Approach to Public Urban Mobility in a Post-Disaster Context. J. Urban Technol.25:99–121.

Fan, S.K., Su, C.J., Nien, H.T., Tsai, P. F. and Cheng, C. Y. (2018). Using machine learning and big data approaches to predict travel time based on historical and real-time data from Taiwan electronic toll collection. Soft Comput. 22(17):5707–5718.

Fiore, U., Florea, A. and Lechuga, G.P. (2019). An Interdisciplinary Review of Smart Vehicular Traffic and Its Applications and Challenges. J. Sens. Actuator Netw. 8: 13.

Fryszman, F., Carstens, D.D.D.S. and Da Cunha, S.K. (2019). Smart mobility transition: A socio-technical analysis in the city of Curitiba. Int. J. Urban Sustain. Dev. 11: 141–153.

Garau, C. and Pavan, V.M. (2018). Evaluating Urban Quality: Indicators and Assessment Tools for Smart Sustainable Cities. Sustainability. 10 :575.

Garau, C., Masala, F. and Pinna, F. (2016). Cagliari and smart urban mobility: Analysis and comparison. Cities. 56:35–46.

Geng, Y. and Cassandras, C. G. (2015). Multi-intersection Traffic Light Control with blocking. Discrete Event Dynamic Syst. 1–2(25): 7–30.

Groth, S. (2019). Multimodal divide: Reproduction of transport poverty in smart mobility trends. Transp. Res. Part A Policy Pr.125: 56–71.

Guedes, A.L.A.; Alvarenga, J.C.; Goulart, M.D.S.S.; Rodriguez, M.V.R.Y.; Soares, C.A.P. (2018). Smart Cities: The Main Drivers for Increasing the Intelligence of Cities. Sustainability. 10: 3121.

Hall, D.W. and Pesenti, J. (2019). Growing the Artificial Intelligence Industry in the UK. https://assets.publishing.service.gov.uk/

Hayat, P. (2016). Smart Cities: A Global Perspective. India Q. A J. Int. Aff.72:177–191.

Hayat, P. (2016). Smart Cities: A Global Perspective. India Q. A J. Int. Aff. 72: 177–191.

Hoffmann, M.W., Wildermuth, S., Gitzel, R., Boyaci, A., Gebhardt, J., Kaul, H., Amihai, I., Forg, B.; Suriyah, M.R. and Leibfried, T. (2020). Integration of Novel Sensors and Machine Learning for Predictive Maintenance in Medium Voltage Switchgear to Enable the Energy and Mobility Revolutions. Sensors.20: 2099.

https://population.un.org/wpp/Download/Standard/Population/.

Huang, W., Jia, W., Guo, J., Williams, B.M., Shi, G. and Wei, Y. (2018). Real-time prediction of seasonal heteroscedasticity in vehicular traffic flow series. IEEE Trans. Intell. Transp. Syst. 19(10):3170–3180.

Huang, W., Song, G. Hong, H. and Xie, K. (2014). Deep architecture for traffic flow prediction: Deep belief networks with multitask learning. IEEE Trans. Intell. Transp. Syst.15: 2191–2201.

Huang, Y., Santos, A.C. and Duhamel, C. (2019). Model and methods to address urban road network problems with disruptions. Int. Trans. Oper. Res. 27: 2715–2739.

Hu, J., Niu, H., Carrasco, J., Lennox, B., & Arvin, F. (2020). Voronoi-based multi-robot autonomous exploration in unknown environments via deep reinforcement learning. IEEE Transactions on Vehicular Technology, 69(12), 14413-14423.‏

INTERSAFE. (2005). Requirements for Intersection Safety Applications, EU 6th Framework Program, 2005.

Irfanullah, I., Jamal, A. and Subhan, F. (2019) Public perception of autonomous car: A case study for Pakistan. Adv. Transp. Stud. 49:145–154.

Jacob, S., Rekh, A., Manoj, G., and Paul, J. (2018). Smart Traffic Management System with Real Time Analysis. International Journal of Engineering and Technology (UAE). 7: 348-351.‏

Jaiswal, M., Gupta, N. and Rana, A. (2020). Real-time Traffic Management in Emergency using Artificial Intelligence. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), pp. 699-702.

Jeong, R., and L. Rilett. (2004). Bus arrival time prediction using artificial neural network model.” Paper presented at Proceedings - 7th International IEEE Conference on Intelligent Transportation Systems, ITSC 2004, Washington DC, United States.

Johnsen, D., Vorholt, F., Gieschen, J. H., Müller, B. and Randhahn, A. (2019). Electric Mobility and Smart Mobility Concepts—Restrained Uptake in German Cities. World Electr. Veh. J. 10:81.

Kamel, M.A.E. (2013). Encouraging walkability in GCC cities: Smart urban solutions. Smart Sustain. Built Environ.2:288–310.

Kamruzzaman, Y.T. (2019). Smart Cities and Mobility: Does the Smartness of Australian Cities Lead to Sustainable Commuting Patterns? J. Urban Technol. 26: 21–46.

Kerracala, Z. (2018). Want to use AI and machine learning? NetworkWorld, 21 December 2018.

Kim, H. S., Hwang, Y. S., Yoon, D. S., Choi, W. G. and Park, C. H. (2014). Driver workload characteristics analysis using EEG data from an urban road. IEEE Trans. Intell. Transp. Syst. 15(4):1844–1849.

Kim, H. S., Yoon, D., Shin, H. S. and Park, C. H. (2019). Predicting the EEG level of a driver based on driving information. IEEE Trans. Intell. Transp. Syst.20(4):1215–1225.

Knowles, R.D., Ferbrache, F. and Nikitas, A. (2020). Transport’s historical, contemporary and future role in shaping urban development: Re-evaluating transit-oriented development. Cities 99: 102607.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25, 1097-1105.‏

Labidi, S. (2019). Predictive Analysis on Road Accident. MSc thesis.

Lafrance, A. (2015). Self-Driving Cars Could Save 300,000 Lives Per Decade in America. 29 September 2015.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.‏

Li, S., Sui, P. C., Xiao, J. and Chahine, R. (2019). Policy formulation for highly automated vehicles: Emerging importance, research frontiers and insights. Transp. Res. Part A Policy Pr.124: 573–586.

Li, S., Sui, P.-C., Xiao, J. and Chahine, R. (2019). Policy formulation for highly automated vehicles: Emerging importance, research frontiers and insights. Transp. Res. Part A Policy Pr. 124: 573–586.

Lim, H.S.M. and Taeihagh, A. (2018). Autonomous Vehicles for Smart and Sustainable Cities: An In-Depth Exploration of Privacy and Cybersecurity Implications. Energies.11: 1062.

Lim, K., Hazel S.M. and Taeihagh, A. (2018). Autonomous Vehicles for Smart and Sustainable Cities: An In-Depth Exploration of Privacy and Cybersecurity Implications. Energies 11, no. 5: 1062. doi: 10.3390/en11051062

Lima, E.G., Chinelli, C.K., Guedes, A.L.A., Vazquez, E. G., Hammad, A.W.A., Haddad, A. and Soares, C.A.P. (2020). Smart and Sustainable Cities: The Main Guidelines of City Statute for Increasing the Intelligence of Brazilian Cities. Sustainability.12: 1025.

Liu, C. and Chang, F. (2019). Hybrid Cascade Structure for License Plate Detection in Large Visual Surveillance Scenes, in IEEE Transactions on Intelligent Transportation Systemsl. 20(6): 2122-2135.

Liu, T. and Ceder, A. (2015). Analysis of a new public-transport-service concept: Customized bus in China. Transp. Policy.39:63–76.

Longo, A., Zappatore, M. and Navathe, S.B. (2019). The unified chart of mobility services: Towards a systemic approach to analyze service quality in smart mobility ecosystem. J. Parallel Distrib. Comput.127: 118–133.

Lopes, J., Bento, J., Huang, E., Antoniou, C. and Ben-Akiva, M. (2010). Traffic and mobility data collection for real-time applications. in Proc. 13th Int. IEEE Annul Conf. Intell. Transp. Syst., Madeira, Portugal, Sep. 2010, pp. 216–223.

Lv, Y., Duan, Y., Kang, W., Li, Z. and Wang, F.Y. (2014). Traffic Flow Prediction with Big Data: A Deep Learning Approach. IEEE Trans. Intell. Transp. Syst. 16: 865–873.

Lyons, G. (2018). Getting smart about urban mobility–Aligning the paradigms of smart and sustainable. Transp. Res. Part A Policy Pr.115: 4–14.

Lyons, G. (2018). Getting smart about urban mobility–Aligning the paradigms of smart and sustainable. Transp. Res. Part A Policy Pr. 115: 4–14.

Ma, J., Yang, Y., Guan, W., Wang, F., Liu, T., Tu, W. and Song, C. (2017). Large-scale demand driven design of a customized bus network: A methodological framework and Beijing case study. J. Adv. Transp. 2017, 3865701.

Maerivoet, S., Daems, F., Maertens, F., Renckens, K., Van Houtte, P. and Buelens, L. (2012). A Field Trial on Smart Mobility. Procedia Soc. Behav. Sci.54:926–935.

Maier, E. (2012). Smart Mobility–Encouraging sustainable mobility behaviour by designing and implementing policies with citizen involvement. JeDEM.4:115–141.

Mandal, V. and Adu-Gyamfi, Y. Object Detection and Tracking Algorithms for Vehicle Counting: A Comparative Analysis. https://arxiv.org/abs/2007.16198

Manders, T., Wieczorek, A. and Verbong, G. (2018). Understanding smart mobility experiments in the Dutch automobility system: Who is involved and what do they promise? Futures. 96:90–103.

Mangiaracina, R., Perego, A., Salvadori, G. and Tumino, A. (2017). A comprehensive view of intelligent transport systems for urban smart mobility. Int. J. Logist. Res. Appl. 20: 39–52.

Mantelero, A. (2015). Data protection, e-ticketing, and intelligent systems for public transport. Int. Data Priv. Law.5:309–320.

Marblestone, A. H., Wayne, G., & Kording, K. P. (2016). Toward an integration of deep learning and neuroscience. Frontiers in computational neuroscience, 10, 94.‏

Maria, N., Debyser, A., Scordamaglia, D. and Pape, M. (2019). Artificial Intelligence in Transport: Current and Future Developments, Opportunities and Challenges. European Parliamentary Research Service (EPRS), PE 635:609, March 2019.

Marsden, G. and McDonald, N.C. (2017). Institutional issues in planning for more uncertain futures. Transportation.46:1075–1092.

Matyas, M. and Kamargianni, M. (2019). The potential of mobility as a service bundle as a mobility management tool. Transportation. 46: 1951–1968.

McCarley, C.A. )2005(. Methods and Metrics for Evaluation of an Automated Real-Time Driver Warning System Journal of the Transportation Research Board Transportation Research Board of the National Academies 1937, 87-95 ISN:0361-198110.3141/1937-1.

Melis, A., Mirri, S., Prandi, C., Prandini, M., Salomoni, P. and Callegati, F. (2017). Integrating Personalized and Accessible Itineraries in MaaS Ecosystems through Microservices. Mob. Networks Appl.23:167–176.

Melo, S., Macedo, J. and Baptista, P. (2017). Guiding cities to pursue a smart mobility paradigm: An example from vehicle routing guidance and its traffic and operational effects. Res. Transp. Econ. 65: 24–33.

Miles, J.C. and Chen, K. (eds). (2004). The Intelligent Transport Systems Handbook (2nd Edition). Recommendations from the World Road Association (PIARC). London, Route 2 Market.

Miles, J.C. and Walker, A.J. (2006). The potential application of artificial intelligence in transport. IEEE Proc. Intell. Transp. Syst. 153: 183–198.

Min, W., Yu, L., Yu, L. and He, S. (2018). People logistics in smart cities. Commun. ACM. 61: 54–59.

More, R., Mugal, A., Rajgure, S., Adhao, R.B. and Pachghare, V.K. (2016). Road traffic prediction and congestion control using Artificial Neural Networks. In Proceedings of the 2016 International Conference on Computing, Analytics and Security Trends (CAST), Pune, India. pp. 52–57.

Mtoi, E.T., Moses, R. and Ozguven, E.E. (2014). An Alternative Approach to Network Demand Estimation: Implementation and Application in Multi-Agent Transport Simulation (MATSim). Procedia Comput. Sci.37:382–389.

Mulay, S. A., Dhekne, C. S., Bapat, R. M., Budukh, T. U. and Gadgil, S. D. (2013). Intelligent City Traffic Management and Public Transportation System. International Journal of Computer Science Issues, 10(3), 46-50.

Munkácsy, A. and Monzón, A. (2017). Impacts of Smart Configuration in Pedelec-Sharing: Evidence from a Panel Survey in Madrid. J. Adv. Transp. 2017:1–11.

Nikitas, A., Avineri, E. and Parkhurst, G. (2018). Understanding the public acceptability of road pricing and the roles of older age, social norms, pro-social values, and trust for urban policymaking: The case of Bristol. Cities.79:78–91.

Nikitas, A., Michalakopoulou. K., Njoya, E.T. and Karampatzakis, D. (2020). Artificial Intelligence, Transport, and the Smart City: Definitions and Dimensions of a New Mobility Era. Sustainability.12: 2789.

Nikolaeva, A., Brömmelstroet, M.T., Raven, R. and Ranson, J. (2019). Smart cycling futures: Charting a new terrain and moving towards a research agenda. J. Transp. Geogr.79:102486.

Nonautonomous Vehicles at Signalized Road Intersection. Procedia CIRP.91:194–200.

Noy, K. and Givoni, M. (2018). Is ‘Smart Mobility’ Sustainable? Examining the Views and Beliefs of Transport’s Technological Entrepreneurs. Sustainability.10: 422.

Okwu., M.O., Chukwu V.U. and Oguoma O.N. (2019). Application of Artificial Neural Network Model for Cost Optimization in a Single-source, Multi-destination System with Nondeterministic Inputs. IWANN: Advances in Computational Intelligence, 539-554.

Olayode, I.O., Tartibu, L.K., Okwu, M.O. and Uchechi, U.F. (2020b). Intelligent transportation system, un-signalized road intersections and traffic congestion in Johannesburg a systematic review. Procedia CIRP 91: 844–850.

Olayode, O. I., Tartibu, L. K., & Okwu, M. O. (2020). Application of Artificial Intelligence in Traffic Control System of Non-autonomous Vehicles at Signalized Road Intersection. Procedia CIRP, 91, 194-200.‏

Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583), 607-609.‏

Ossowski, S., Hernandez, J. Z., Belmonte, M. V., Fernandez, A., Garcıa-Serrano, A., Perez-de-la-Cruz, J., Serrano, J. M. and Triguero, F. (2005). Decision Support for Traffic Management Based on Organizational and Communicative Multiagent Abstractions. Transportation Research Part C. 13: 272-298.

Guedes, A.L.A., Alvarenga, J.C., Goulart, M.D.S.S., Rodriguez, M.V.R.Y. and Soares, C.A.P. (2018). Smart Cities: The Main Drivers for Increasing the Intelligence of Cities. Sustainability. 10: 3121.

Ozaki, H. (2018). Technical standardization of ITS and Asian initiatives for intelligent mobility. IATSS Res.42:72–75.

Park, J. (2017). Sensemaking/What Will Autonomous Vehicles Mean for Sustainability? Available online: https://thefuturescentre.org/articles/11010/what-will-autonomous-vehicles-mean-sustainability.

Parkin, J., Clark, B., Clayton, W., Ricci, M. and Parkhurst, G. (2018). Autonomous vehicle interactions in the urban street environment: A research agenda. Proc. Inst. Civ. Eng. Munic. Eng.171:15–25.

Patterson, D. (1990). Introduction to Artificial Intelligence and Expert Systems; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA.

Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat. 2021. World Population Prospects. [ONLINE] Available at:

Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat. 2018. World Urbanization Prospects. [ONLINE] Available at: https://population.un.org/wup/ .

Porru, S., Missoa, F.E., Pani, F.E. and Repetto, C. (2020). Smart mobility and public transport: Opportunities and challenges in rural and urban areas. J. Traffic Transp. Eng. (Engl. Ed.). 7:88–97.

Prasetijo, J., Pour, M. H. and Ghadiri, S. M. R. (2011). Capacity of unsignalized intersections under mixed traffic conditions. Procedia - Soc. Behav. Sci.16:676–685.

Rao, S.K. and Prasad, R. (2018). Impact of 5G Technologies on Smart City Implementation. Wirel. Pers. Commun. 100: 161–176.

Ren, S., He, K., Girshick, R., Sun, J. and Faster R.C. (2020). Towards Real-Time Object Detection with Region Proposal Networks. https://arxiv.org/abs/1506.01497

Romero, P.R. and López, M.C. (2014). ieCOtrans: Smart Mobility for Economic, Energy and Environmental Assessment of Measures and Policies Applied to the Transport Sector. Procedia–Soc. Behav. Sci. 162: 506–515.

Russell, S. and Norvig, P. (2016). Artificial Intelligence: A modern approach, 3rd ed. Pearson.

Sánchez-Corcuera, R., Nuñez-Marcos, A., Sesma-Solance, J., Bilbao-Jayo, A., Mulero, R., Zulaika, U., Azkune, G. and Almeida, A. (2019). Smart cities survey: Technologies, application domains and challenges for the cities of the future. Int. J. Distrib. Sens. Netw.15: 155014771985398.

Schirokoff, A., Pilli-Sihova, E. and Sihvola, N. (2012). Assessing the safety impacts of intersection safety systems, Procedia Social and Behavioral Sciences 48:1515–1524.

Sears, A. (2018). The Future of AI: These Four Industries Will Change By 2030. Bold Business, 30 November 2018.

Sexton, R.O. (2020). Predicting Traffic Accident Severity in the UK using Machine Learning. https://medium.com/r-magnitude/ 327cd529476b

Shi, J., Wei, H., and Shi, S. (2012). Driving motion capture-based driver behavior analysis, in Proc. 15th Int. IEEE Conf. Intell. Transp. Syst., Anchorage, AK, USA, Sep. 2012, pp. 1166–1171.

Shokry, S., Tanaka, S., Nakamura, F., Ariyoshi, R. and Miura, S. (2018). Bandwidth Maximization Approach for Displaced Left-Turn Crossovers Coordination under Heterogeneous Traffic Conditions. Journal of Traffic and Transportation Engineering. 6: 183-196.

Silva, B.P., Andrade, M. and Ferreir, S. (2020). Machine learning applied to road safety modeling: A systematic literature review. Journal of Traffic and Transportation Engineering. 7(60):775-790.

Soomro, S., Miraz, M.H., Prasanth, A. and Abdullah, M. (2018). Artificial Intelligence Enabled IoT: Traffic Congestion Reduction in Smart Cities. Available from: https://www.researchgate.net/publication/325114623.

Soriano, F.R., Samper-Zapater, J.J., Martinez-Dura, J.J., Gimeno, R.V.C. and Plume, J.M. (2018). Smart Mobility Trends: Open Data and Other Tools. IEEE Intell. Transp. Syst. Mag.10: 6–16.

Soriano, F.R., Samper-Zapater, J.J., Martinez-Dura, J.J., Gimeno, R.V.C. and Plume, J.M. (2018). Smart Mobility Trends: Open Data and Other Tools. IEEE Intell. Transp. Syst. Mag. 10: 6–16.

Suthanaya, P.A. (2018). Analysis of travel pattern and the need to develop sustainable transportation infrastructure in Sarbagita metropolitan area. MATEC Web Conf.195: 4-17.

Tachizawa, E., Alvarez-Gil, M. and Montes-Sancho, M. (2015). How “smart cities” will change supply chain management. Supply Chain Manag. 20: 237-248.

Tachizawa, E., Alvarez-Gil, M. and Montes-Sancho, M. (2015). How smart cities will change supply chain management. Supply Chain Manag.20: 237-248.

Talari, S., Shafie-khah, M., Siano, P., Loia, V., Tommasetti, A. and Catalão, J.P.S. (2017). A Review of Smart Cities Based on the Internet of Things Concept. Energies.10: 421.

Talari, S., Shafie-khah, M., Siano, P., Loia, V., Tommasetti, A. and Catalão, J.P.S. (2017). A Review of Smart Cities Based on the Internet of Things Concept. Energies.10: 421.

Talari, S., Shafie-khah, M., Siano, P., Loia, V., Tommasetti, A., Catalão, J.P.S. (2017). A Review of Smart Cities Based on the Internet of Things Concept. Energies.10: 421.

Thomopoulos, N. and Nikitas, A. (2019). Smart Urban Mobility Futures: Editorial for Special Issue. Int. J. Automot. Technol. Manag.19:1–9.

Thompson, D. (2019). Early Impact of Artificial Intelligence (AI) on Highway Transportation. ITS America Annual Meeting. Retrieved from https://www.its.dot.gov/presentations/itsa

Tripathi, K.P. (2011). A review on knowledge-based expert system: Concept and architecture. International Journal of Computer Applications. Special Issue on Artificial Intelligence Techniques - Novel Approaches and Practical Applications. 4: 19-23.

Troutbeck, R. (2016). Modelling Signalized and Unsignalized Junctions,” in Handbook of Transport Modelling Article information. 2016, pp. 443–460.

Turetken, O., Grefen, P., Gilsing, R. and Adali, O.E. (2019). Service-Dominant Business Model Design for Digital Innovation in Smart Mobility. Bus. Inf. Syst. Eng.61: 9–29.

Turetken, O., Grefen, P., Gilsing, R. and Adali, O.E. (2019). Service-Dominant Business Model Design for Digital Innovation in Smart Mobility. Bus. Inf. Syst. Eng.61: 9–29.

Turo ´n, K., Czech, P. and Juzek, M. (2017). The concept of a walkable city as an alternative form of urban mobility. Sci. J. Silesian Univ. Technol. Ser. Transp.95:223–230.

Turoń, K., Czech, P. and Juzek, M. (2017). The concept of a walkable city as an alternative form of urban mobility. Sci. J. Silesian Univ. Technol. Ser. Transp. 95:223–230.

U.S. Department of Transportation. (2018). U.S. Department of Transportation Strategic Plan for FY 2018-2022. Retrieved from https://www.transportation.gov/sites/dot.gov/files/docs/mission/administrations/officepolicy/304866/dot-strategic-planfy2018-2022508.pdf

U.S. Department of Transportation. (2019(. U.S. DOT Artificial Intelligence Activities. Retrieved from Transportation.gov: https://www.transportation.gov/AI.

Vasudevan, M., Townsend, H., Dang, T.N., O’ Hara, A., Burnier, C. and Ozbay, K. (2020). Identifying Real-World Transportation Applications Using Artificial Intelligence (AI). Final report. Department of Transportation, Intelligent Transportation Systems Joint Program Office. www.its.dot.gov/index.htm Final Report

Violino, B. (2018). Designing and building artificial intelligence infrastructure, TechTarget, 05 April 2018.

Webster, J. and Watson, R.T. (2002). Analyzing the past to prepare for the future: Writing a literature review. MIS Q. 26: xiii–xxiii.

White House. (2019). Artificial Intelligence for the American People. Retrieved from The White House: https://www.whitehouse.gov/ai/executive-order-ai/

World Health Organization. (2018). Global Status Report on Road Safety; World Health Organization: Paris, France, 2018.

World Health Organization. (2019). Global Status Report on Road Safety; World Health Organization: Geneva, Switzerland.

Yao, H., Wu, F., Jia, Y., Lu, S., Gong, P. and Ye, J. (2018). Deep Multi-View Spatial-Temporal Network for Taxi Demand Prediction. arXiv:1802.1814.

Yigitcanlar, T. and M. Kamruzzaman. (2019). Smart Cities and Mobility: Does the Smartness of Australian Cities Lead to Sustainable Commuting Patterns? J. Urban Technol.26: 21–46.

Yigitcanlar, T., Wilson M. and E. Kamruzzaman. (2019). Disruptive Impacts of Automated Driving Systems on the Built Environment and Land Use: An Urban Planner’s Perspective. J. Open Innov. Technol. Mark. Complex. 5: 24.

Zawadzki, J. (2019). The Secrets to a Successful AI Strategy, Medium, 09 July 2019.

Zeng, Y., Li, D. and Vasilakos, A.V. (2015). Opportunistic fleets for road event detection in vehicular sensor networks. Wirel. Netw. 22: 503–521.

Zhang, S., Gu, J., Guan, J. and Zhang, L. (2017). Method of predicting bus arrival time based on MapReduce combining clustering with neural network. In Proceedings of the 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA), Beijing, China, 10–12 March 2017; pp. 296–302.

Zhang, W., Guhathakurta, S., Fang, J. and Zhang, G. (2015). Exploring the impact of shared autonomous vehicles on urban parking demand: An agent-based simulation approach. Sustain. Cities Soc.19:34–45.

Zhang, Y. J. Malikopoulos, A. A. and Cassandras, C. G. (2016). Optimal control and coordination of connected and automated vehicles at urban traffic intersections, in Proc. Amer. Control Conf. (ACC), Boston, MA, USA, Jul. 2016, pp. 6227–6232.

Zuidgeest, M.H.P. (2005). Sustainable Urban Transport Development: a Dynamic Optimization Approach, T2005/3, April 2005, TRAIL Thesis Series, The Netherlands.

منشور

2021-01-01

الإلكتروني ISSN

1658-8770

المطبوع ISSN

1658-8762

Details about this monograph

ISBN-13 (15)

978-603-8361-06-1

تاريخ النشر (11)

2021-01-01

الأبعاد

17mm x 24mm x 7.30mm