تناول هذا الكتابُ في جُزْئِهِ الأَوَّلِ أسسَ ومبادئ نمذجة المعادلة البنائيَّة بوصفها أسلوبًا إحصائيًّا واسع الانتشار في الدراسات والبحوث في التخصصات كافة. وتمثِّل نمذجة المعادلة البنائيَّة إستراتيجيَّة تحليليَّة متقدِّمة في العلوم النفسيَّة والسلوكيَّة والاجتماعيَّة. وهدف هذا الكتابُ إلى مساعدة الباحثين على فَهم أسس وتطبيقات وقضايا نمذجة المعادلة البنائيَّة، وكيفيَّة تنفيذها باستخدام برنامج LISREL. ويُعد هذا العمل دليلاً مرشدًا للباحثين في البيئة العربيَّة للاستخدام الأمثل لإستراتيجيَّة نمذجة المعادلة البنائيَّة.
وجاء الكتاب في تسعة فصول:تناول الفصل الأول مفهوم نمذجة المعادلة البنائية، أهدافها، إستراتيجيات توظيفها في التحليل، الأشكال المتعددة للنمذجة البنائية، التطور التاريخي لنشأة هذا الأسلوب. وتضمن الفصل الثاني الارتباط والعوامل التي تؤثر فيه، ومعامل ارتباط بيرسون وحسابه وكيفية تنفيذه في برنامج SPSS، وقضية محدد المصفوفة السالب وكذلك قضية التلازمية أو الاعتمادية الخطية Collinearity. وتناول الفصل الثالث أولى مراحل بناء نموذج المعادلة البنائية وهو تخصيص أو تعيين النموذج، ويشمل مكونات نموذج المعادلة البنائية والقضايا المرتبطة بهذه المرحلة، مثل: عدد المؤشرات المناسب لتمثيل المتغير الكامن (المفهوم)، وأشكال المؤشرات، وقضية النماذج البديلة، وأهمية صياغتها وإشكالية السببية. وبيَّن الفصل الرابع قضية التحديد لنموذج المعادلة البنائية ومفهومها وكيفية تقديرها ودرجات الحرية والعوامل التي تؤدي إلى ظهور قضية التحديد وتشخيصها وكيفية علاجها. وتناول الفصل الخامس قضايا مسح وإعداد البيانات وتهذيبها، وقضايا حجم العينة وطبيعة البيانات والاعتدالية والبيانات الغائبة وقضية التلازمية الخطية وغيرها من المسلمات التي يجب مراعاتها عند تطبيق إستراتيجية نمذجة المعادلة البنائية. وعرض الفصل السادس أوامر برنامج الليزرال وكيفية تنفيذ هذه الأوامر على مثال لنموذج المعادلة البنائية. واستعرض الفصل السابع طرائق تقدير نموذج المعادلة البنائية ومسلمات كل طريقة. وتضمن الفصل الثامن قضية تقويم أو تقدير مطابقة النموذج، وعرضت مؤشرات المطابقة مثل: كا2(χ2) والمؤشرات المطلقة وكذلك المتزايدة، وحدود القطع الخاصة بكل مؤشر والعوامل المؤثرة في مؤشرات حسن المطابقة، وأهم التوصيات لتقويم النموذج. وتناول الفصل التاسع قضية تعديل النموذج ومبررات وأخطار إستراتيجيات تعديل النموذج، وكذلك مداخل إجراء نموذج المعادلة البنائية.
أولًا: المراجع العربية:
- عامر، عبد الناصر السيد. (2004م). أداء مؤشرات حسن المطابقة لتقويم نموذج المعادلة البنائية، المجلة المصرية للدراسات النفسية، مجلد 14.
- عامر، عبد الناصر السيد. (2005م). إستراتيجية تحزيم العناصر (Item parceling) في التحليل العاملي التوكيدي، المجلة المصرية للدراسات النفسية، المجلد 18.
- عامر، عبد الناصر السيد. (2008م). الاتجاه نحو الكمبيوتر وقلق الكمبيوتر: البنية والسببية. مجلة كلية التربية ببنها، 19، 165-191.
ثانيًا: المراجع الأجنبية:
- Akaike, H. (1987). Factor analysis and AIC. Psychometrika, 52, 317-332.
- Arbuckle, J. L. (1995-2009). AMOS 18.0 Uesrs Guide.Grawfordville,FL: Amos Development Corporation.
- Anderson , J. C., & Gerbing, D. V. (1988). Structural equation modeling in practice: Areview and recommended two – step approach. Psychological Bulletin, 103, 411-23.
- Anderson, J. C., & Gerbing, D. W. (1992). Assumptions and comparative strength of the two – step approach: Comment on Fornell and YI. Sociological Methods & Research, 20, 321 – 333.
- Bagozzi, R. P. (1977). Structural equation models in experimental research. Journal of Marketing Research, 14, 209-226.
- Bagozzi, R. P., & Heatherton, T. F. (1994). AGeneral approach to representing multifaceted personality constructs: Application to state self-esteem. Structural Equation Modeling, 1, 35-67.
- Bagozzi, R. P., & YI, Y. (1988). On the evaluation of structural equation models. Journal of Academy of Marketing Science, 16, 74 – 94.
- Bagozzi , R . P., &Yi, Y. (2012). Specifications, evaluation, and interpretation of structural equation models. Journal of Academy of Marketing Science, 40, 8-34.
- Barrett, P. (2007). Structural equation modeling: Adjudging model fit. Personality and Individual differences, 42, 815-824.
- Baumgartner, H., & Homburg, C. (1996). Applications of structural equation modeling in marketing and consumer Research: A review. International Journal of Research in Marketing, 13, 139-161.
- Bentler, P. M. (1990). Comparative Fit Indices in Structural Models. Psychological Bulletin, 107, 238-246.
- Bentler , P . M. (2002). EQS 6: Structural equations program manual. Encino,CA: Multivariate Software , Inc..
- Bentler, P . M., & Bonnett, D.G.( 1980 ) . Significance tests and goodness – of - fit in the analysis of covariance structures. Psychological Bulletin, 112, 400-404.
- Bentler, P. M., & Chou, C. P. (1987). Practical issues in structural modeling. Sociological Methods and Research, 16, 78-117.
- Betz, N. E. (2005). Enhancing research productivity in counseling psychology: Reactions to three perspectives. The Counseling Psychologist, 33, 358 – 366.
- Bollen, K. A. (1989). Structural equations with Latent variables. New York: Wiley.
- Bollen , K . A., & Armiger, G. (1991). Observational residuals in factor analysis and structural equation models. In P.V. Marsden (Eds.),Sociological methodology (PP. 235-262). Cambridge, MA: Blackwell.
- Bollen, K. A., & Long, J. S. (1993). Introduction. In K.A. Bollen & J. S. long (eds.), Testing structural equation modeling (pp.1-9). Newburg park, CA: Sage.
- Boomsma, A. (1983). On the robustness of lisrel (maximum likelihood estimations) against small sample size and non-normality. Unpublished doctoral dissertation, university of Groningen, Groningen.
- Boomsma, A. (2000). Reporting analysis covariance structure. Structural Equation Modeling, 7, 461- 483.
- Boomsma, A., & Hoogland, J. J. (2001). The robustness of lisRel modeling revisited . In R. Cudeck , S . dutoit , & D. Sorbom (Eds.), Structural equation models: Present and future (PP. 139-188). Chicago: Scientific Software International.
- Bozdogan, H. (1987). Model selection and Akaike's information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52, 345-370.
- Brannick, M. T. (1995). Critical comments on applying covariance structure modeling. Journal of Organizational Behavior, 16, 201-213.
- Breckler, S. T. (1990). Application of covariance structure modeling in psychology: Cause for concern? Psychological Bulletin, 107, 260 – 273.
- Breivik, E., & Olsson, U. H. (2001). Adding variables to improve fit: The effect of model size on fit assessment in LISREL. In R. Cudeck, S .DU.Toit, &D. Sorbom (Eds.), Structural equation modeling: Present future(pp.169-194). Lincolnwood, IL: scientific software international.
- Brown, T. A. (2006). Confirmatory factor analysis for applied research. New York: Guilford Press.
- Browne, M. W. (1984). Asymptotic distribution free methods in the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 37, 62-83 .
- Browne, M. W., & Cudeck, R. (1989). Single sample cross-validation indices for covariance structures. Multivariate Behavioral Research, 24, 445-455.
- Browne, M. W., & Cudek, R. (1993). Alternative ways of assessing model fit. In K .A. Bollen & J. S. Long (Eds.), Testing structural equation models (PP. 136-162) . Newbury Park, CA: Sage.
- Browne, R. L. (1994). Efficacy of the indirect approach for estimating structural equation models with missing data: A comparison of five methods. Structural Equation Modeling: A Multidisciplinary Journal, 1, 287-316
- Burt, R. S. (1976). Interpretational confounding of unobserved variables in structural equation models. Sociological methods & Research, 5, 3-52.
- Chen, F., Bollen, K. A., Paxton, P., Curran, P. J., & Kirby, J. B. (2001). Improper solutions in structural equation models: Causes, consequences, and strategies. Sociological Methods & Research, 29, 468-508.
- Chou, C. P., & Bentler, P. M. (1995). Estimates and tests in structural equation modeling. In. R. H. Hoyle (Eds.), Structural equation modeling: concepts, issues, and applications (PP. 37- 59). Thousand Oaks, CA: Sage.
- Chou, C ., Bentler , P . M., & Satorra, A . (1991). Scaled test statistics and robust standard errors for no normal data in covariance structure analysis: Monte Carol study. British Journal of Mathematical and Statistical Psychology, 44 , 347 – 357 .
- Cliff, N. (1983). Some cautions concerning the application of causal modeling methods. Multivariate behavioral research, 18, 115-126.
- Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Mahwah, NJ: Erlbaum.
- Costello, A. B., & Osborne, J. W. (2005). Best practices in exploratory factor analysis: Recommendations for getting the Most from your analysis. Practical Assessment, Research, and Evaluation, 10, 1-9.
- Crockett, S. A. (2012). A five – step guide to conducting SEM analysis in counseling research. Counseling Outcome Research and Evaluation, 3, 30-47.
- Cudeck, R. (1989). Analysis of correlation covariance structure models. Psychological Bulletin, 105, 317-327.
- Cuttance, P. (1987). Issues and problems in the application of Structural equation modeling. In p. Cuttance & R. Ecob ( Eds. ), structural modeling by example (PP . 241 – 279). New York: Cambridge University Press.
- Dancy, C. P., & Reidy, J. (2011). Statistics without maths for psychology(5th.ed). Harlow: Pearson, Prentice Hall.
- Du, Y. (2009). A review structural equation modeling and its use in library & information studies. Library & Information Science Research, 31, 257 – 263.
- Duncan, O. D. A. (1966). Path analysis: Sociological examples. American Journal of Sociology, 72, 1-16.
- Engle, K .S., Mossbrugger, H., & Muller, R. O. (2003). Evaluating the fit of structural equation models test of significance and descriptive goodness of – fit measures. Methods of Psychological Research Online, 8, 23 – 74.
- Fan, X., & Sivo, S. A. (2005). Sensitivity of fit indexes to mis-specified structural or measurement model components: rationale of two index strategy revisited. Structural Equation Modeling, 12, 343- 367.
- Fassinger, R. E. (1987). Use of structural equation modeling in counseling psychology research. Journal of Counseling Psychology, 34, 425 -436.
- Fava, J. L., & Velicer, W. F. (1992). The effects of over extraction on factor and component analysis. Multivariate Behavioral Research , 27,387-415.
- Field, A. (2009). Discovering statistics using SPSS(3th.ed). London: Sage publications, LTD.
- Fornell, C. (1983). Issues in the application of covariance structure analysis. Journal of Consumer Research, 9, 443-448.
- Fornell, C., & Larcker, D. F. (1981). Evaluation structural equation models with unobservable variables and measurement errors. Journal of Marketing Research,18, 39-50.
- Fornell. C., & YI, Y. (1992). Assumptions of the two – step approach to latent variable modeling. Sociological Methods & Research, 20, 291-320.
- Freedman, D. A. (1987). As others see us: Acase study in path analysis(with discussion). Journal of Educational Statistics, 12, 101-223.
- Gebring, D. W, & Anderson, J. C. (1984). On the meaning of within factor correlated measurement errors. Journal of Consumer Research, 11, 572- 580.
- Goffin, R. D. (2007). Assessing the adequacy of structural equation models: Golden rules and editorial policies. Personality and Individual Differences, 42, 831-839.
- Green, S. B., & Salkind, N. J. (2014). Using SPSS for windows and macintosh: Analysing and understanding data (7th.ed). Boston: Pearson Education, Inc.
- Grewal, R., Cote, J. A., & Baumgartner, H. (2004). Multi-Collinearity and measurement error in structural equation models: Implications for theory testing. Marketing Science , 23, 519-529.
- Guadagnoli, E., & Velicer, W. F. (1988). Relation of sample size to the stability of component patterns. Psychological Bulletin, 103, 265-275.
- Hair Jr. J. H., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate data analysis. New Jersey: Prentice- Hall.
- Hair, J. F., Ringlet, C. M., & Sarstedt, M. ( 2011 ). PLS – SEM: Indeed a silver bullet . Journal of Marketing Theory and Practice ,19, 139 – 151 .
- Harris, R. J. (1975). A primer of multivariate statistics. New York: Academic.
- Hayduk, L. A. (1996). LISREL: Issues, debates and strategies. Jones Hopkins University Press.
- Herting, J. R, & Costner, H. L. ( 1985 ). Respecification in multiple indicator models. In H. M. Blalock (Eds.), Causal models in the social sciences ( 2 nd .ed ) ( PP: 321 – 393 ) . New York: Aldin.
- Hinkle, D. E., &Wiersma, W., & Jurs, S .G. (1994). Applied statistics for the behavioral sciences(3rd.ed). Boston: Houghton.
- Holbert, R. L., & Stephenson, M. T. (2002). Structural equation modeling in communication sciences(1995- 2000). Human Communication Research, 28, 531-551.
- Hoogland, J. J., & Boomsma, A. (1998). Robustness studies in covariance structure modeling: An overview and a meta-analysis. Sociological Methods & Research, 26, 329-367.
- Hox, J. (1995). AMOS, EQS, and LISREL for windows: comparative review. Structural Equation Modeling, 2, 79-91.
- Hoyle, R. H. (1995). Structural equation modeling: Basic concepts and fundamental issues .In R . H. Hoyle (Eds.),Structural equation modeling: Concepts, issues, and applications ( PP1-15 ). Thousand Oaks, CA: Sage.
- Hoyle, R. H., & Smith, G. T. (1994). Formulating clinical research hypotheses as structural equation models: A conceptual overview. Journal of Counseling and Clinical Psychology, 62, 429 – 440.
- Hoyle, R. H, & Panter, A. T. (1995). Writing about structural equation modeling. In R. H. Hoyle (Eds.), Structural Equation Modeling: concepts, issues, and application (PP.158-175) .thousand Oaks: Sage.
- Hu, L., & Bentler, P. M. (1995). Evaluating model fit. In R. H. Hoyle (Eds.), Structural equation modeling: concepts, issues, and applications (PP. 76- 99). Thousand Oaks, CA: Sage.
- Hu, L., & Bentler, P. M. (1998). Fit indices in covariance structure analysis: Sensitivity under parameterized model misspecification. Psychological Methods , 3, 424- 453.
- Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis. Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1- 55.
- Hu, L. T., Bentler, P. M., & Kano, Y. (1992). Can test statistics in covariance structure analysis be trusted? Psychological Bulletin, 112, 351-360.
- Hulland, J., Chow, Y. H., & Lan, S. (1996). Use of causal models in marketing research: A review. International. Journal. of Research in marketing, 13, 181-197.
- Iacobucci, D. (2010). Structural equation modeling: Fit indices, sample size, and advanced topics. Journal of Consumer Psychology, 20, 90-98.
- Jackson, D. L. (2001). Sample size and number of parameter estimates in maximum likelihood confirmatory factor analysis: A Monte Carlo investigation. Structural Equation Modeling, 8, 205-223.
- Jackson, D. L. (2003). Revisiting sample size and number of parameter estimates: Some support for the N: q hypothesis. Structural Equation Modeling, 10, 128-141.
- Joreskog, K . G. ( 1969 ). A general approach to confirmatory maximum likelihood , factor analysis . Psychometricak, 34, 183-202.
- Jöreskog, K. G. (1973), “A General Method for Estimating a Linear Structural Equation System,” in A. S. Goldberger and O. D. Duncan, eds., Structural Equation Models in the Social Sciences, New York: Academic Press.
- Joreskog, K. G. (1993). Testing structural equation modeling. In: K. A. Bollen & J. S. long (Eds.), Testing structural equation modeling. (PP. 294-326). Newbury Park, CA:Sage.
- Joreskog, K. G., & Sorbom, D. (1988). LISREL 7: A guide to the program and applications (2 nd. ed). Chicago: Illinois.
- Joreskog, K. G., & Sorbom, D. (1993). LISREL 8: user’s reference guide. Mooresville, In: scientific software.
- Joreskog, k. G., & Sorbom, D. (1996). LISREL 8: user's reference guide. Chicago, IL: Scientific software International.
- Joreskog, K. G., & Sorbom, D. (2006). LISREL for Windows 8.8. Lincolnwood, Illinois: Scientific Software International.
- Keesling, J. W. (1972). Maximuum likelihood approaches to casual flow analysis.Unpublished PhD dissertation,Department of Education, University of Chicago, Chicago
- Kaplan, D. (1990). Evaluating and modifying covariance structural models: A Review and recommendations .Multivariate Behavioral Research, 25, 137-155.
- Kaplan, D. (2000). Structural equation modeling: Foundations and extensions. Thousand oaks, CA: Sage.
- Kenny, D. A. (1987). Statistical for social and behavioral sciences .Canada: little, Brown Company limited.
- Kline, R. K. (2011). Principles and practice of structural equation modeling (3th.ed). New York: Guilford publications, Inc.
- Kline, R. K. (2016). Principles and practice of structural equation modeling (4th.ed). New York: Guilford publications, Inc.
- Loehlin, J.C. (2004). Latent variable models: An introduction to factor, path, structural equation analysis(4th ed). Mahwah, NJ: Erlbaum.
- MacCallum, R. C. (1986). Specification searches in covariance structure modeling. Psychological Bulletin, 100, 107-120.
- MacCullum, R. C. (1998). Commentary on quantitative methods in IQ research. Industrial Organizational psychology, 35, 1- 4.
- MacCallum, R. C., Roznowski, M., & Necowit, L. B. (1992). Model modifications in covariance structure analysis: The problem of capitalization on chance. Psychological Bulletin, 111, 490 – 504 .
- MacCallum, R. C, & Wagener, D. T., Uchino, B. N., & Fabrigar, L. R. (1993). The Problem of equivalent models in application of covariance Structure analysis. Psychological Bulletin, 144, 185- 199.
- MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological methods, 1, 130-149.
- MacCallum, R. C, & Austin, J. T. (2000). Application of structural equation modeling in psychological research. Annual Review of Psychology, 51, 201-226.
- Mallow, C. L. (1973). Some comments on Cp. Technometrics, 15, 661-675.
- Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika , 57, 519 – 530 .
- Marsh, H. W., Balla, J. R., & McDonald, R. P. (1988). Goodness of fit indexes in confirmatory analysis: The effect of sample size. Psychological Bulletin, 103, 391-411.
- Marsh, H. W., & Hau, K. T. (1996). Assessing goodness of fit: is parsimony always desirable? Journal of Experimental Education, 96,364-391.
- Marsh, H. W., & Hau, K. T. (2007). Application of latent – variable models in educational al psychology: the need for methodological substantive synergies. Contemporary Educational Psychology, 32, 151 – 170.
- Marsh, H. W., Hau, K. T., Balla, J. R., & Grayson, D. (1998). is more ever too much?: The number of indicator per factoring confirmatory Factor analysis. Multivariate Behavioral Research, 33, 181 – 220.
- Marsh, H . W., Hau, T., & Grayson . D. (2005). Goodness of fit evaluation in structural equation modeling . In A. Mayday – Olivares & J . McCardle (eds.), Psychometrics: A festschrift to Roderick P. McDonald (PP. 275-340 ). Mahwah, NJ: Lawrence Erlbaum Associates, INC.
- March, H. W., Hau, K. T., & Wen, Z. (2004). In search of golden rules: Comment on hypothesis testing approaches to setting cut off values for fit indexes and dangers on overgeneralizing Hu and Bentler s(1999) findings. Structural Equation Modeling, 11, 320-341.
- Martines, M. P. (2005). The use of structural equation modeling in counseling psychology research. The Counseling Psychologist, 33, 269- 298.
- Maruyama, G. M. (1998). Basics of structural equation modeling. Thousand Oaks: Sage publications, Inc.
- McDonald, R. P., & Ho, M. R. (2000). Principles and practice of reporting structural equation modeling. Psychological Methods, 7, 64- 82.
- McDonald, R. P., & Marsh, H. W. (1990). Choosing a multivariate model: Noncentrality and goodness of fit. Psychological bulletin, 107, 247.
- Micceri, I . (1989). The unicon , the normal curve and other improbable creatures . Psychological Bulletin, 105, 156 – 165.
- Mulaik, S. A. (2009). Linear causal modeling with structural equations. BocaRaton: Chapman &Hall-CRC.
- Mulaik, S. A., Jams, L. R., Alstine, J. V ., Bonnett, N., lind, S., & Stilwell, D. C. (1989) . Evaluation of goodness of fit indices for structural equation models. Psychological Bulletin, 105, 430-445.
- Mulaik, S. A., & Millsap, R. E. (2000). Doing the four step right. Structural Equation Modeling, 7, 36- 73.
- Muller, R. O. (1996). Basic Principles of structural equation modeling. New York: Springer- verlag.
- Muthen. B. (1984). A general structural equation model with dichotomous, ordered categorical and continuous latent variable indicators. Psychometrika , 49, 15-132 .
- Muthen, B. O., Du-Toit, S. H., &Spisic, D. (1997). Robust inference using weighted least square and quartic estimation equations in latent variable modeling with categorical and continuous outcomes. From:www.gseis.ucla.edu/faculty/ Muthen/articles.
- Muthén, L. K., & Muthén, B. O. (2002). How to use a Monte Carlo study to decide on sample size and determine power. Structural Equation Modeling, 4, 599-620.
- Muthén, L., & Muthen, B.O. (1998-2010). Mplus User’s Guide, (6th Ed.).Muthén and Muthén, Los Angeles. CA, USA.
- Neale, M. C. (1997). MX: Statistical Modeling. Richmond, VA: Dept. Psychiatry, Med. Coll . Virginia.
- Nevitt, J., & Hancock, G. R. (2001). Performance of bootstrapping approaches to model test statistics and parameter standard error estimation in structural equation modeling. Structural Equation Modeling, 8, 353-377.
- Nunkoo, R., Ramkissom, H., & Gursoy, D. (2013). Use of structural equation modeling in tourism research: Past, present, and future. Journal of Travel Research, xxx, 1-13.
- Nunnaly, J. C. (1978). Psychometric theory. New York: McGraw-Hill.
- Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (3rd.ed). New York: McGraw –Hill.
- Pearl, J. (2000). Causality: models, reasoning, and inferences. New York: Cambridge University-Press
- Quintana, S. M., & Maxwell, S. E. (1999). Implications of recent development in structural equation modeling for counseling psychology. The Counseling Psychologist, 27, 485- 537.
- Raykov, T., & Marcoulides, G. A. (2006). A first course in structural equation modeling (2nd. ed). New Jersey: Erlbaum.
- Raykov, T., Tomer, A., & Nesselroade. J. R. (1991). Reporting structural equation modeling results in psychology and aging: some proposed guidelines. Psychology and Aging, 6, 499 – 503.
- Ridgon, E. E. (1995). A necessary and sufficient identification rule for structural models estimated in practice. Multivariate Behavior Research, 30, 359-383.
- Satorra, A., & Bentler, P. M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In A. Von Eye & C. C. Clogg (Eds.), Latent variable analysis: Applications for development research. Thousand Oaks, CA: Sage.
- Schreiber, J. B., Stage, F. K., king, k., Nora, A., & Barlow, E.A. (2006). Reporting structural equation modeling and confirmatory factor analysis results: A Review. The Journal of Education Research, 99, 323-337.
- Schumacker, R. E., & Lomax, R. G. (1996). Beginner’s guide to structural equation modeling. Mahwah, NJ: Lawrence Erlbaum.
- Schumacker, R. E., & Lomax, R. G. (2010). Beginner’s guide to structural equation modeling (3rd ed). Mahwah, NJ: Lawrence Erlbaum.
- Shah, R., & Goldstein, S. M. (2006). Use of structural equation modeling in operations management research: Looking back and forward. Journal of Operation Management, 24, 148-169.
- Sharama, S., Mukherjee, S., Kumar, A., & Dillon, W. R. (2005). A simulation study to investigate the use of cut off values for assessing model fit in covariance structural models. Journal of Business Research,58,935- 943.
- Shook, C. L., Ketchen D. J., Hult, G. T. M., & Kacmar, K. M. (2004). An assessment of the use of structural equation modeling in strategic management Research. Strategic Management Journal, 25, 397 -404.
- Smith, d., & Smith, K. L. (2004). Structural equation modeling in management accounting research: Critical analysis and opportunities. Journal Accounting Literature, 23, 49 – 86.
- StatSoft, Inc. (2009). STATISTICA 9(Computer software). Tulsa, OK:Author.
- Steiger, J. H. (1990a). Structural model evaluation and Modification: An interval estimation approach. Multivariate Behavioral Research, 25, 173-180.
- Steiger, J. H. (1990b). Some additional thoughts on component , and factor indeterminacy. Multivariate Behavioral Research, 25,41-45.
- Steiger, J. H. (1999). Structural equation modeling (SEPATH). Statistics for windows, vol.111. Stat Soft, Tulsa,Ok.
- Steiger, J . H., & lind, J. M. (1980). Statistical based tests for the number of common factors. Paper presented the Meeting of Psychometric society, Iowa City, IA.
- Stelzl, I. (1986). Changing a causal hypothesis without changing the fit; some rules for generating equivalent path models. Multivariate Behavioral Research, 21,309-331.
- Steven, J. P. (2009). Applied multivariate statistics for the social sciences. New York: Rout ledge.
- SystatSoftware, Inc. (2009). SYSTAT(Version 13.0)(Computer software). Chicago:Author.
- Tabachnick, B. G., & Fidell, L. S. ( 2007 ). Using multivariate statistics (4 th.ed). Boston: Allyn & Bacon.
- Tanaka, J. S. (1987). “How big is big enough?”: Sample size and goodness of fit in structural equation modeling. Child Development, 58, 134-146.
- Thompson, B. (2000). Ten commandments of structural equation modeling. In L. G. Grimm & P. R. Yarnold(Eds.), Reading and understanding more multivariate statistics(pp. 261-283). Washington, DC: Amrican Psychological Association.
- Ullman, J. B. (2006). Structural equation modeling: Reviewing the basics and Moving forward. Journal of Personality Assessment, 87, 35- 50.
- Ullman,J. B., & Bentler, P. M. (2013). Structural equation modeling .In. I. B. Weiner (Eds.), Handbook of Psychology (2nd .ed.), (pp. 661 – 690 ) . John wiely & Sons, Inc.
- West, S. G., Finch, J. F., & Curran, P. J. (1995). Structural equation modeling with non normal variables: problems and remedies. In R. H. Hoyle (Eds.), Structural equation modeling: concepts, issues, and applications (PP. 65- 75). Thousand Oaks, CA: Sage.
- Weston, R., & Gore, P. A. (2006). A brief guide to structural equation modeling. The Counseling Psychologist, 34 – 719 -751.
- Wilcox, R. R. (2009). Basic statistics: Undrestanding conventional methods and modern insights. Oxford: Oxford University Press.
- Wiley, D. E. (1973). The identification problem for structural equation models with unmeasured variables. In A. Goldberg & O.D. Duncan(Eds.), Structural equation models in the social sciences(pp. 69-84). New York: Academic Press.
- Wright, S. (1920). The relative importance of heredity and environment in determinining the piebald pattern of guinea pigs. Proceedings of the National Academy of sciencse, 6, 320-332.
- WU. C. J. ( 2009 ). Factor analysis of the general self – efficacy scale and its relationship with Individualism / collectivism among twenty – five countries: Application of multilevel confirmatory factor analysis. Personality and Individual Differences , 46, 699 – 703.
Yu, C. Y. (2002). Evaluation cutoff criteria of model fit indices for latent variable models with categorical and continuous outcomes. Unpublished manuscript, University of California, Los Angelles, CA.